
Kernel Dev Intro
and

Better Code
Personal Experience Sharing by Yixin Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Disclaimer
• The views expressed here are purely based on my 

personal experiences and thoughts. Please regard 
them as for reference only. 

• There could be inaccuracies or omissions in my 
content, so constructive feedback and corrections 
are welcome.

• Kernel Part Post: 
https://bobankh.com/posts/contribute-kernel/

• Coding Part Post: 
https://bobankh.com/posts/better-code/

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

https://bobankh.com/posts/contribute-kernel/
https://bobankh.com/posts/better-code/


Dev Env Make Patch

Better Code Collaboration

Table of contents

01 02

03 04

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Dev Env

01

Setup the kernel

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Avoid mess up
● Choice: Vmware, VirtualBox, qemu, Firecracker, etc.

● Recommendation:
○ Easy-to-Use
○ Flexible

Virtual Machine

Vagrant

libvirt

qemu

KVM

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Very Convenient
● Script: vagrant-libvirt/vagrant-libvirt-qa/scripts/install.bash
● Grant privileges:

● Vagrantfile
○ Box: os-image
○ Plugin
○ Provision

Installation

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Usage

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Make Patch

02

How to contribute to upstream

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● /MAINTAINERS
○ M: Maintainers
○ R: Reviewers
○ T: Source Tree
○ L: Mailing List
○ W: Web Page
○ S: Status
○ F: Files
○ …

Where to Begin

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

https://elixir.bootlin.com/linux/latest/source/MAINTAINERS


● Single Patch

● Patch Series

○ N+1 patches including cover letter

How to Create a Patch

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Modification to re-submit
How to Create a Patch

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Functionality Check
○ Must be compiled
○ Must pass all tests

● Style Check
○ scripts/checkpatch.pl
○ ERROR, WARNING, CHECK

Before Submit

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Configure Email Client
○ Plain-Text
○ git-email

How to Send a Patch

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● scripts/get_maintainer.pl

● Send TO the Mailing List of subsystem
● CC to some of maintainers and reviewers

● A little demo patch
● An awesome patch template:

○ “Just give me 1 month to write a thesis for this patch…”

Where to Send a Patch

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

https://lore.kernel.org/all/20230329073558.8136-1-bobankhshen@gmail.com/T/#u
https://lore.kernel.org/lkml/20230414225551.858160935@linutronix.de/


Better Code

03

Principles, Patterns and Practices

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Principles:
○ high-level abstract ideas and philosophies

● Patterns:
○ mid-level reusable solutions to commonly 

occurring software design problems
● Practices:

○ specific, granular techniques and examples 
for coding

Code X

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Provide rules to eliminate bad solutions 
and pick a good one

● A set of high-level guidelines that help 
ensure clean, simple and readable code

Principles

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Correct
● Readable
● Idiomatic: conventional
● Simple: directness, frugality
● Performant

CRISP

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Provide rules to eliminate bad solutions and pick a 
good one

● A set of high-level guidelines that help ensure 
clean, simple and readable code

● High cohesion: strongly related and focused
● Loose coupling: self-contained, not have strong 

dependence on other modules or components

High cohesion, Loose coupling

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Easier to understand
● More flexible
● More resilient
● Reusable
● Independent development
● Fault isolation

High cohesion, Loose coupling

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Single Responsibility Principle(SRP)
● Open-Closed Principle(OCP)
● Liskov Substitution Principle(LSP)
● Interface Segregation Principle(ISP)
● Dependency Inversion Principle(DIP)

SOLID

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Keep It Simple, Stupid
● Simple designs are more readable, 

testable, and maintainable. They have 
fewer bugs and edge cases.

KISS

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● You Aren't Gonna Need It
● Not adding extra features or optimizations 

that aren't essential based on current 
requirements

● First get something working, then make it 
optimal

YAGNI

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Don't Repeat Yourself
● Aims to simplify your code and improve 

decoupling and reusability
● But if you find it more straightforward to 

understand by copying and pasting, then 
do so

DRY

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Separation of Concerns
● Detangling code so it can work in isolation
● DRY vs SoC: concepts
● Despite superficial similarities of code, we 

should focus on the inner concepts

SoC

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Logging: historical record of discrete 
events

● Tracing: the flow of a request through the 
system end-to-end

● Utilizes different log levels to gain optimal 
observability

Observability

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Represent typical solutions to recurring 
challenges or template solutions to well-
known problems

Patterns

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Inheritance is about 'A-is-B’
● Composition is about 'A-has-B’
● Benefits of composition:

○ Loose coupling
○ Flexibility
○ Testability
○ Single Responsibility Principle
○ Dependency Inversion Principle
○ Readability
○ Cache-Friendliness(Data-Oriented-Design)

Inheritance or Composition

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● First implement a set of tests for every new feature being added 
to the software.

● These tests are expected to fail as the new feature has not been 
implemented yet.

● Once it is implemented, all previous tests and the new ones 
should pass.

● Describe what you would like the software to be 
before developing new features.

● Tests are the best in-code documentation

Test-Driven Development

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● But always remember:
○ Tests can only prove that the code does what the 

test writer thought it should, and most of the 
time they don't even prove that.

○ A faulty or insufficient test is much worse than no 
test at all, because it _looks_ like you have tests.

Test-Driven Development

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● While we are not responsible for directly testing 
third-party libraries and frameworks, we should 
write tests that exercise our usage of them.

● To validate that our understanding and 
integration of a third-party API is correct

● Serve as monitors that can detect if and when a 
third-party update introduces unintended 
behavior changes

Clean Boundaries: Learning Tests

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● When you have a bunch of third-party APIs to 
use together, it is recommended to bundle them 
together and wrap them in a modular.

● Create a shim-layer to isolate between your code 
and third-party code.

● To achieve flexible adjustments and changes 
and encapsulating details

Clean Boundaries

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Allows the interface of an existing class to 
be used as another interface. 

● It is often used when the interface of an 
existing class is not compatible with what 
the client code requires.

● Client
● Target
● Adaptor

Adaptor Pattern

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Use factory instead of constructor
● Employs a separate method to handle 

object creation
● More flexible

Factory Pattern

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Defines an interface common to all 
supported algorithms, making them 
interchangeable.

● Allows you to switch algorithms 
dynamically without needing to modify 
the Context.

Strategy Pattern

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A class receives its dependencies from external 
sources rather than creating them itself.

● Increased flexibility and modularity, testability, reduced 
coupling between components.

● By decoupling objects from their dependencies, changes can 
be made more easily without affecting other parts of the 
system.

Dependency Injection

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Practices

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Resource Acquisition Is Initialization
● Ties the lifetime of resources to the lifetime of the 

objects that own them.
● Handles resource cleanup in a scope-based, 

systematic manner
● When an object goes out of scope, its destructor is 

called, which frees any owned resources.

RAII

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering
● DDD(Domain Driven Design)

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
○ Group related functionality together
○ Each method should do one clear thing
○ Extract classes to each be responsible for only 

one concept (Single Responsibility Principle)

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability

○ DRY
○ Eliminate duplication
○ Extract method/class
○ Encapsulate into entity classes
○ Replace inheritance with combination
○ Combine inheritance with template method

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance

○ Replace magic number with a symbolic 
constant

○ Reduce the risk of making mistakes when 
changing the value

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility

○ Open-Closed Principle: We Open for extension 
but Close for modification.

○ Template method
○ AOP(Aspect Oriented Programming)

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling

○ More 'pluggable’
○ Leverage more design patterns to decouple 

our code

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering

○ User-Interactive layer
○ Core Logic layer
○ Bare Metal layer

Refactor

User-Interactive

Core Logic

Bare Metal

User

System

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering
● DDD(Domain Driven Design)

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering
● DDD(Domain Driven Design)

Refactor

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Explains how code works and why it was 
built that way

● Be Clear and Concise
● Examples and Snippets
● Provide Context
● Use Consistent Formatting and Style
● Document Edge Cases and Error Handling

Documentation

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Collaboration

04

Pull Request <= PR => Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

Conventional Commit

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● feat
● fix
● refactor
● docs
● test
● chore
● ci
● perf
● revert
● style

Conventional Commit

fix(api): prevent racing of requests

Introduce a request id and a reference 
to latest request. Dismiss incoming 
responses other than from latest 
request.

Remove timeouts which were used to 
mitigate the racing issue but are 
obsolete now.

Reviewed-by: Z
Refs: #123

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Pull Request <= PR => Peer Review

PR

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Inform other developers that you created a new branch, 
corresponding to a new version of your source code.

● Others can then see what are the differences and comment 
on them, eventually approving or declining the merge of your 
changes into the mainline.

● Two heads are better than one.
● The theory behind this is that by giving chance to others to 

look at your proposed changes, they can spot errors you 
missed before they go into production.

Pull Request

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A knowledge-sharing mechanism for other team 
members

● Avoid only single person understand some code 
pieces

● Reduce the number of bugs introduced to 
the mainline

● Reduce the accidental technical debt accrued

Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A common scenario of PR

Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A common scenario of PR

Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A common scenario of PR
● The potential issues and their consequences:

○ Worked for a full week

Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A common scenario of PR
● The potential issues and their consequences:

○ Worked for a full week
○ Creates the PR request with 55 files

■ PR should be concentrated
■ a review of 200–400 LOC over 60 to 90 

minutes should yield 70–90% defect discovery
■ should not have more than 250 LOC to review

Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● A common scenario of PR
● The potential issues and their consequences:

○ Worked for a full week
○ Creates the PR request with 55 files
○ No one reviews it for a couple of days

Peer Review

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Modern Code Review: A Case Study at Google[ICSE-
SEIP ‘18]：
● Creating
● Previewing
● Commenting
● Addressing Feedback
● Approving

Review Process

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

https://dl.acm.org/doi/10.1145/3183519.3183525


● Focus review on clarity and correctness first, then 
standards

● Fundament your feedback

● Don’t be afraid to ask questions

PR: Reviewer

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Keep your changes concentrated and small
● Review your code before submitting
● A well-organized PR description

○ A Clear Title
○ A Detailed Description
○ Always review your changes first
○ Provide references

PR: Author

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



Thanks

https://bobankh.com/slides/kdev-coding.pdf

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen


	幻灯片 1: Kernel Dev Intro and Better Code
	幻灯片 2: Disclaimer
	幻灯片 3: Dev Env
	幻灯片 4: Dev Env
	幻灯片 5: Virtual Machine
	幻灯片 6: Installation
	幻灯片 7: Usage
	幻灯片 8: Make Patch
	幻灯片 9: Where to Begin
	幻灯片 10: How to Create a Patch
	幻灯片 11: How to Create a Patch
	幻灯片 12: Before Submit
	幻灯片 13: How to Send a Patch
	幻灯片 14: Where to Send a Patch
	幻灯片 15: Better Code
	幻灯片 16: Code X
	幻灯片 17: Principles
	幻灯片 18: High cohesion, Loose coupling
	幻灯片 19: High cohesion, Loose coupling
	幻灯片 20: SOLID
	幻灯片 21: KISS
	幻灯片 22: YAGNI
	幻灯片 23: DRY
	幻灯片 24: SoC
	幻灯片 25: CRISP
	幻灯片 26: Observability
	幻灯片 27: Patterns
	幻灯片 28: Inheritance or Composition
	幻灯片 29: Test-Driven Development
	幻灯片 30: Test-Driven Development
	幻灯片 31: Clean Boundaries: Learning Tests
	幻灯片 32: Clean Boundaries
	幻灯片 33: Adaptor Pattern
	幻灯片 34: Factory Pattern
	幻灯片 35: Strategy Pattern
	幻灯片 36: Dependency Injection
	幻灯片 37: Practices
	幻灯片 38: RAII
	幻灯片 39: Refactor
	幻灯片 40: Refactor
	幻灯片 41: Refactor
	幻灯片 42: Refactor
	幻灯片 43: Refactor
	幻灯片 44: Refactor
	幻灯片 45: Refactor
	幻灯片 46: Refactor
	幻灯片 47: Refactor
	幻灯片 48: Documentation
	幻灯片 49: Collaboration
	幻灯片 50: Conventional Commit
	幻灯片 51: Conventional Commit
	幻灯片 52: PR
	幻灯片 53: Pull Request
	幻灯片 54: Peer Review
	幻灯片 55: Peer Review
	幻灯片 56: Peer Review
	幻灯片 57: Peer Review
	幻灯片 58: Peer Review
	幻灯片 59: Peer Review
	幻灯片 60: Review Process
	幻灯片 61: PR: Reviewer
	幻灯片 62: PR: Author
	幻灯片 63: Thanks 



