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Disclaimer
• The views expressed here are purely based on my 

personal experiences and thoughts. Please regard 
them as for reference only. 

• There could be inaccuracies or omissions in my 
content, so constructive feedback and corrections 
are welcome.

• Kernel Part Post: 
https://bobankh.com/posts/contribute-kernel/

• Coding Part Post: 
https://bobankh.com/posts/better-code/
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Dev Env Make Patch
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Dev Env
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Setup the kernel
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● Avoid mess up
● Choice: Vmware, VirtualBox, qemu, Firecracker, etc.

● Recommendation:
○ Easy-to-Use
○ Flexible

Virtual Machine

Vagrant

libvirt

qemu

KVM
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● Very Convenient
● Script: vagrant-libvirt/vagrant-libvirt-qa/scripts/install.bash
● Grant privileges:

● Vagrantfile
○ Box: os-image
○ Plugin
○ Provision

Installation
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Usage
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Make Patch
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How to contribute to upstream
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● /MAINTAINERS
○ M: Maintainers
○ R: Reviewers
○ T: Source Tree
○ L: Mailing List
○ W: Web Page
○ S: Status
○ F: Files
○ …

Where to Begin
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https://elixir.bootlin.com/linux/latest/source/MAINTAINERS


● Single Patch

● Patch Series

○ N+1 patches including cover letter

How to Create a Patch
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● Modification to re-submit
How to Create a Patch
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● Functionality Check
○ Must be compiled
○ Must pass all tests

● Style Check
○ scripts/checkpatch.pl
○ ERROR, WARNING, CHECK

Before Submit
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● Configure Email Client
○ Plain-Text
○ git-email

How to Send a Patch
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● scripts/get_maintainer.pl

● Send TO the Mailing List of subsystem
● CC to some of maintainers and reviewers

● A little demo patch
● An awesome patch template:

○ “Just give me 1 month to write a thesis for this patch…”

Where to Send a Patch
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https://lore.kernel.org/all/20230329073558.8136-1-bobankhshen@gmail.com/T/#u
https://lore.kernel.org/lkml/20230414225551.858160935@linutronix.de/


Better Code
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Principles, Patterns and Practices
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● Principles:
○ high-level abstract ideas and philosophies

● Patterns:
○ mid-level reusable solutions to commonly 

occurring software design problems
● Practices:

○ specific, granular techniques and examples 
for coding

Code X
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● Provide rules to eliminate bad solutions 
and pick a good one

● A set of high-level guidelines that help 
ensure clean, simple and readable code

Principles

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen

Create By: Yixin
 Shen



● Correct
● Readable
● Idiomatic: conventional
● Simple: directness, frugality
● Performant

CRISP
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● Provide rules to eliminate bad solutions and pick a 
good one

● A set of high-level guidelines that help ensure 
clean, simple and readable code

● High cohesion: strongly related and focused
● Loose coupling: self-contained, not have strong 

dependence on other modules or components

High cohesion, Loose coupling
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● Easier to understand
● More flexible
● More resilient
● Reusable
● Independent development
● Fault isolation

High cohesion, Loose coupling
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● Single Responsibility Principle(SRP)
● Open-Closed Principle(OCP)
● Liskov Substitution Principle(LSP)
● Interface Segregation Principle(ISP)
● Dependency Inversion Principle(DIP)

SOLID
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● Keep It Simple, Stupid
● Simple designs are more readable, 

testable, and maintainable. They have 
fewer bugs and edge cases.

KISS
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● You Aren't Gonna Need It
● Not adding extra features or optimizations 

that aren't essential based on current 
requirements

● First get something working, then make it 
optimal

YAGNI
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● Don't Repeat Yourself
● Aims to simplify your code and improve 

decoupling and reusability
● But if you find it more straightforward to 

understand by copying and pasting, then 
do so

DRY
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● Separation of Concerns
● Detangling code so it can work in isolation
● DRY vs SoC: concepts
● Despite superficial similarities of code, we 

should focus on the inner concepts

SoC
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● Logging: historical record of discrete 
events

● Tracing: the flow of a request through the 
system end-to-end

● Utilizes different log levels to gain optimal 
observability

Observability
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● Represent typical solutions to recurring 
challenges or template solutions to well-
known problems

Patterns
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● Inheritance is about 'A-is-B’
● Composition is about 'A-has-B’
● Benefits of composition:

○ Loose coupling
○ Flexibility
○ Testability
○ Single Responsibility Principle
○ Dependency Inversion Principle
○ Readability
○ Cache-Friendliness(Data-Oriented-Design)

Inheritance or Composition
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● First implement a set of tests for every new feature being added 
to the software.

● These tests are expected to fail as the new feature has not been 
implemented yet.

● Once it is implemented, all previous tests and the new ones 
should pass.

● Describe what you would like the software to be 
before developing new features.

● Tests are the best in-code documentation

Test-Driven Development
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● But always remember:
○ Tests can only prove that the code does what the 

test writer thought it should, and most of the 
time they don't even prove that.

○ A faulty or insufficient test is much worse than no 
test at all, because it _looks_ like you have tests.

Test-Driven Development
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● While we are not responsible for directly testing 
third-party libraries and frameworks, we should 
write tests that exercise our usage of them.

● To validate that our understanding and 
integration of a third-party API is correct

● Serve as monitors that can detect if and when a 
third-party update introduces unintended 
behavior changes

Clean Boundaries: Learning Tests
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● When you have a bunch of third-party APIs to 
use together, it is recommended to bundle them 
together and wrap them in a modular.

● Create a shim-layer to isolate between your code 
and third-party code.

● To achieve flexible adjustments and changes 
and encapsulating details

Clean Boundaries
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● Allows the interface of an existing class to 
be used as another interface. 

● It is often used when the interface of an 
existing class is not compatible with what 
the client code requires.

● Client
● Target
● Adaptor

Adaptor Pattern
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● Use factory instead of constructor
● Employs a separate method to handle 

object creation
● More flexible

Factory Pattern
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● Defines an interface common to all 
supported algorithms, making them 
interchangeable.

● Allows you to switch algorithms 
dynamically without needing to modify 
the Context.

Strategy Pattern
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● A class receives its dependencies from external 
sources rather than creating them itself.

● Increased flexibility and modularity, testability, reduced 
coupling between components.

● By decoupling objects from their dependencies, changes can 
be made more easily without affecting other parts of the 
system.

Dependency Injection
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Practices
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● Resource Acquisition Is Initialization
● Ties the lifetime of resources to the lifetime of the 

objects that own them.
● Handles resource cleanup in a scope-based, 

systematic manner
● When an object goes out of scope, its destructor is 

called, which frees any owned resources.

RAII
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering
● DDD(Domain Driven Design)

Refactor
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● Extract Method/Extract Class
○ Group related functionality together
○ Each method should do one clear thing
○ Extract classes to each be responsible for only 

one concept (Single Responsibility Principle)

Refactor
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● Extract Method/Extract Class
● Improve Code Reusability

○ DRY
○ Eliminate duplication
○ Extract method/class
○ Encapsulate into entity classes
○ Replace inheritance with combination
○ Combine inheritance with template method

Refactor
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance

○ Replace magic number with a symbolic 
constant

○ Reduce the risk of making mistakes when 
changing the value

Refactor
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility

○ Open-Closed Principle: We Open for extension 
but Close for modification.

○ Template method
○ AOP(Aspect Oriented Programming)

Refactor
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling

○ More 'pluggable’
○ Leverage more design patterns to decouple 

our code

Refactor
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering

○ User-Interactive layer
○ Core Logic layer
○ Bare Metal layer

Refactor

User-Interactive

Core Logic

Bare Metal

User

System
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering
● DDD(Domain Driven Design)

Refactor
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● Extract Method/Extract Class
● Improve Code Reusability
● Reduce Hard-Code for Maintenance
● Enhance Extensibility
● Decoupling
● Layering
● DDD(Domain Driven Design)

Refactor
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● Explains how code works and why it was 
built that way

● Be Clear and Concise
● Examples and Snippets
● Provide Context
● Use Consistent Formatting and Style
● Document Edge Cases and Error Handling

Documentation
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Collaboration
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Pull Request <= PR => Peer Review
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<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

Conventional Commit
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● feat
● fix
● refactor
● docs
● test
● chore
● ci
● perf
● revert
● style

Conventional Commit

fix(api): prevent racing of requests

Introduce a request id and a reference 
to latest request. Dismiss incoming 
responses other than from latest 
request.

Remove timeouts which were used to 
mitigate the racing issue but are 
obsolete now.

Reviewed-by: Z
Refs: #123
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Pull Request <= PR => Peer Review

PR
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● Inform other developers that you created a new branch, 
corresponding to a new version of your source code.

● Others can then see what are the differences and comment 
on them, eventually approving or declining the merge of your 
changes into the mainline.

● Two heads are better than one.
● The theory behind this is that by giving chance to others to 

look at your proposed changes, they can spot errors you 
missed before they go into production.

Pull Request
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● A knowledge-sharing mechanism for other team 
members

● Avoid only single person understand some code 
pieces

● Reduce the number of bugs introduced to 
the mainline

● Reduce the accidental technical debt accrued

Peer Review
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● A common scenario of PR

Peer Review
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● A common scenario of PR

Peer Review
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● A common scenario of PR
● The potential issues and their consequences:

○ Worked for a full week

Peer Review
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● A common scenario of PR
● The potential issues and their consequences:

○ Worked for a full week
○ Creates the PR request with 55 files

■ PR should be concentrated
■ a review of 200–400 LOC over 60 to 90 

minutes should yield 70–90% defect discovery
■ should not have more than 250 LOC to review

Peer Review
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● A common scenario of PR
● The potential issues and their consequences:

○ Worked for a full week
○ Creates the PR request with 55 files
○ No one reviews it for a couple of days

Peer Review
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Modern Code Review: A Case Study at Google[ICSE-
SEIP ‘18]：
● Creating
● Previewing
● Commenting
● Addressing Feedback
● Approving

Review Process
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https://dl.acm.org/doi/10.1145/3183519.3183525


● Focus review on clarity and correctness first, then 
standards

● Fundament your feedback

● Don’t be afraid to ask questions

PR: Reviewer
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● Keep your changes concentrated and small
● Review your code before submitting
● A well-organized PR description

○ A Clear Title
○ A Detailed Description
○ Always review your changes first
○ Provide references

PR: Author
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Thanks

https://bobankh.com/slides/kdev-coding.pdf
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