
Sentry: QoE-Aware Failure Handling in Large-Scale Overlay
Networks via Spatiotemporal GNNs

Xingxing Yang
Tsinghua University

Beijing, China
yangxx22@mails.tsinghua.edu.cn

Bo Wang
Tsinghua University

Beijing, China
wangbo2019@tsinghua.edu.cn

Wufan Wang
Beijing University of Posts and

Telecommunications
Beijing, China

wufanwang@bupt.edu.cn

Yixin Shen
Tsinghua University

Beijing, China
syx@ieee.org

Minhu Wang
Tsinghua University

Beijing, China
minhuw@acm.org

Wangqiu You
ByteDance China
Shanghai, China

youwangqiu@bytedance.com

Linhui Lou
ByteDance China
Shanghai, China

loulinhui.shey@bytedance.com

Pei Xu
ByteDance China
Shanghai, China

xupei.os@bytedance.com

Lihang Gao
ByteDance China
Shanghai, China

gaolihang.123@bytedance.com

Zongzhi Hou
ByteDance China
Shanghai, China

houzongzhi.2023@bytedance.com

Mingwei Xu
Tsinghua University

Beijing, China
xumw@tsinghua.edu.cn

Abstract
With the widespread deployment of large-scale overlay networks,
transmission failures among edge servers occur frequently, severely
impacting service availability and Quality of Experience (QoE). Ex-
isting failure handling solutions struggle to effectively address such
scenarios. Accordingly, we propose Sentry, a QoE-aware failure
handling method based on spatiotemporal graph neural networks.
Instead of relying on precise localization of specific faults or root
causes, Sentry directly identifies and offlines a set of edge servers
related to failures to ensure service level objective (SLO) while min-
imizing QoE degradation. Sentry constructs a state graph based
on real relay streams, combining temporal modeling and graph
neural networks to effectively filter out short-term network fluc-
tuations and transform the complex combinatorial optimization
problem into an efficient node-level prediction task. The experi-
mental results show that Sentry outperforms existing solutions in
both success rate and cost of failure handling, demonstrating strong
overall performance and deployment potential.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CNC ’25, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2239-4/25/12
https://doi.org/10.1145/3769270.3770125

CCS Concepts
• Networks→ Network management; Network monitoring; •
Computing methodologies→Machine learning.

Keywords
Failure Handling; Quality of Experience; Graph Neural Networks;
Network Monitoring; Large-Scale Overlay Networks

ACM Reference Format:
Xingxing Yang, Bo Wang, Wufan Wang, Yixin Shen, Minhu Wang, Wangqiu
You, Linhui Lou, Pei Xu, Lihang Gao, Zongzhi Hou, and Mingwei Xu. 2025.
Sentry: QoE-Aware Failure Handling in Large-Scale Overlay Networks via
Spatiotemporal GNNs. In Proceedings of the ACM CoNEXT-2025 Workshop
on Computing and Network Convergence (CNC ’25), December 01–04, 2025,
Hong Kong, Hong Kong. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3769270.3770125

1 Introduction
With the rapid development of various online applications such as
video conferencing [14], cloud gaming [20], and live streaming [8],
users demand higher quality of network services. The best-effort
transmission model used in traditional Internet architecture strug-
gles to ensure stable service under complex traffic patterns and
dynamic link conditions. Therefore, large-scale overlay networks
have become essential infrastructure for supporting a wide range
of daily applications [1, 2, 13]. These networks deploy edge data
centers worldwide, each equipped with multiple edge servers, to
optimize transmission performance and enhance service reliability
and availability.

However, this highly distributed architecture also introduces
complex network interconnection challenges among edge servers

43

https://orcid.org/0009-0007-1297-790X
https://orcid.org/0000-0001-9959-7705
https://orcid.org/0000-0002-6838-3584
https://orcid.org/0000-0002-7228-4968
https://orcid.org/0000-0002-0873-0038
https://orcid.org/0009-0004-0922-1026
https://orcid.org/0009-0002-0117-9826
https://orcid.org/0009-0001-4537-8774
https://orcid.org/0000-0001-5073-5548
https://orcid.org/0009-0007-2663-2507
https://orcid.org/0000-0002-4847-4585
https://doi.org/10.1145/3769270.3770125
https://doi.org/10.1145/3769270.3770125
https://doi.org/10.1145/3769270.3770125

CNC ’25, December 01–04, 2025, Hong Kong, Hong Kong Xingxing Yang et al.

Data Center Nd

Server 1

Server 2

Server Ns

···

Data Center 1

Server 1

Server 2

Server Ns

···

Data Center 2

Server 1

Server 2

Server Ns

···

relay stream 1

relay stream 2

Overlay Network

User A
User B

···

Figure 1: Relay streams in an audio call.

(detailed in Section 2.1). Transmission failures frequently occur,
especially in environments with numerous servers deployed across
multiple cloud providers and geographic regions, posing a serious
threat to overall network availability. For example, in a real-time
video call between two users, transmission failures between edge
servers may cause audio-video desynchronization or even connec-
tion drops, significantly affecting user experience [9].

To ensure high availability of the overlay network, the system
must continuously meet stringent SLO. For example, it is common
practice to require that the success rate of relay streams not fall
below 99.99%; otherwise, a transmission failure is considered to
have occurred, and failure handling should be completed within
a short time. Here, relay streams refer to data streams between
edge servers that carry user communications. As shown in Figure 1,
if users A and B are connected to Server 1 in Data Center 1 and
Server 1 in Data Center 2 respectively, their audio communication
generates two relay streams relying on the stable forwarding ca-
pabilities between these two edge servers. Once the underlying
connection fails to stay alive, or the QoS metrics of the stream
(such as latency or packet loss rate) become abnormal, the stream is
classified as failed; otherwise, it is considered successful. The over-
all SLO compliance rate of the system (i.e., the proportion of time
the SLO is met) directly reflects the availability of the overlay net-
work. Therefore, automated, precise, and real-time failure handling
mechanisms have become a core challenge in the development of
overlay networks.

Unfortunately, existing failure handling methods cannot effec-
tively address transmission failures between edge servers in large-
scale overlay networks. Currentmainstreammethods can be roughly
divided into two categories: one relies on accurately locating the
failure before avoidance and repair [5, 12, 18, 22, 24, 25, 29, 30]; the
other dynamically selects overlay paths based on real-time path
observations to bypass potentially faulty areas [4, 13, 19, 21, 23].
The former faces challenges in failure localization and diagnosis,
struggling to pinpoint specific failure locations and prone to false
positives. The latter is limited by the computational complexity
of path selection and the accuracy of performance measurements,
making it difficult to promptly detect performance degradation of
individual servers within a data center and to perform fine-grained
scheduling (detailed in Section 2.2).

SG: Singapore;

MM: Myanmar;

TH: Thailand;

DE: Germany;

FR: France

MM

SG

TH

DE

FR

Links without failures
Links with failures

MM

SG

TH

DE

FR

(a) (b)

Figure 2: Overlay network transmission failure cases. (a)
Backbone failure disconnects same-provider datacenters
across regions; (b) Regional failure disconnects same-
provider datacenters locally.

To address the above challenges, we propose Sentry, a QoE-aware
failure handling solution based on spatiotemporal graph neural net-
works. Rather than relying on precise localization of specific failure
points or root causes, Sentry directly identifies and offlines a set of
edge servers related to transmission failures, thereby ensuring the
overall stream success rate meets SLO requirements while minimiz-
ing unnecessary server offlining and maintaining high QoE. Sentry
incorporates several key designs: First, it employs a Temporal Em-
bedding Module to capture the temporal evolution of server states,
enabling differentiation between short-term fluctuations and per-
sistent failures, thereby improving identification accuracy. Second,
it constructs a sparse graph based on relay streams among servers
and applies graph neural networks to score each server node. This
transforms the original combinatorial optimization problem into
a node-level prediction problem, drastically reducing the search
complexity from combinatorial to linear, significantly enhancing
failure handling efficiency and generalization capability. Further-
more, Sentry decouples failure handling from path optimization. It
passively handles failures based on the performance of real relay
streams, then an independent overlay routing module uses active
probing to perform path selection, balancing observation accuracy
with system overhead.

We implemented Sentry and evaluated its performance in a sim-
ulated environment. The results demonstrate that Sentry achieves
the highest failure handling success rate, thereby improving the
overall SLO compliance rate. Although the number of offline servers
is slightly higher than that of heuristic baseline methods, the differ-
ence is minimal, and the user experience loss caused by offlining is
lower, showing superior overall performance and practical value.
In the future, Sentry will be deployed in the large-scale overlay net-
work of a globally leading network transmission service provider
to further validate its effectiveness in real-world environments.

This work does not raise any ethical issues.

2 Background
This section first introduces common types of transmission failures
in large-scale overlay networks, and then analyzes the limitations
of existing failure handling methods.

2.1 Types of Transmission Failures
In large-scale overlay networks, transmission failures between edge
servers exhibit diverse causes and complex manifestations. Failures
may stem from hardware malfunctions of individual edge servers,

44

Sentry: QoE-Aware Failure Handling in Large-Scale Overlay Networks via Spatiotemporal GNNs CNC ’25, December 01–04, 2025, Hong Kong, Hong Kong

Table 1: Failure statistics of our overlay network

Failure Type Failure Num. Percentage

Server-level failures 74 31.5%
Data center-level failures 161 68.5%

or from broader issues such as international link congestion, sub-
marine cable cuts, or regional network incidents—leading to simul-
taneous degradation of transmission quality between multiple edge
data centers (as shown in Figure 2). In practice, different types of
failures often occur concurrently and compound each other, signif-
icantly increasing the complexity of failure handling and severely
impacting network availability and user experience.

2.2 Limitations of Existing Solutions
Failure handling solutions mainly fall into two categories:

The first category of solutions relies on accurate failure local-
ization [5, 12, 18, 22, 24, 25, 29, 30], followed by path rerouting
and failure reporting based on the identified faulty components.
The effectiveness of such methods heavily depends on the accu-
racy of failure localization, which is particularly challenging in
large-scale overlay networks. First, failure localization itself is
inherently difficult. In large-scale overlays, the vast number of
edge servers, the involvement of multiple infrastructure providers,
and the presence of cross-border links make it hard to map per-
formance anomalies to specific underlying components. Second,
failure determination is highly uncertain. Transient network
fluctuations and persistent failures often exhibit similar symptoms,
making it difficult for the system to respond promptly without sac-
rificing accuracy. An overly aggressive policy may result in false
positives and unnecessary rerouting, while a conservative one may
delay failure mitigation and reduce system availability.

The second category bypasses failures via overlay routing [4,
13, 19, 21, 23] without explicit failure localization, dynamically
selecting optimal paths based on real-time performance to avoid
faulty regions. However, these methods face significant challenges
in large-scale overlay networks. First, the computational cost
of path selection increases significantly. In large-scale overlay
networks, the number of edge servers is massive—reaching tens of
thousands—and the algorithm for optimal path selection has high
complexity, resulting in substantial scheduling overhead. There-
fore, performing path planning at the granularity of individual edge
servers is difficult to implement in real-world systems. To mitigate
this, existing solutions often perform path planning at the edge
datacenter level. While this reduces computational overhead to
some extent, it fails to capture transmission anomalies associated
with individual servers within a datacenter. In practice, when cer-
tain servers experience degraded performance, inter-datacenter
measurements may not show noticeable deterioration, making it
difficult for the system to detect and bypass the affected servers.
Conversely, in some cases, the entire datacenter may be bypassed
due to a few abnormal servers, leading to underutilization of healthy
servers and reduced overall resource efficiency. As shown in Ta-
ble 1, from January to March 2025, 31.5% of online transmission

failures in our overlay network were related to transmission anom-
alies associated with individual servers within edge datacenters,
highlighting the prevalence and severity of this issue. Second, per-
formance measurement of paths is inherently limited. Active
probing (e.g., ICMP Ping [17]) results may deviate from the actual
performance experienced by real application traffic. Passive obser-
vation relies on existing traffic and is limited by traffic distribution,
making it difficult to cover all paths.

3 Method Design
This section presents our method, Sentry. To capture the spatial
relationships between servers and their temporal dynamics, Sentry
adopts a spatiotemporal graph neural network (GNN) architecture.
It integrates Gated recurrent unit (GRU) [7] for temporal modeling,
GraphSAGE [11] for spatial aggregation, and utilizes a multi-layer
perceptron (MLP) to generate an offlining score for each server,
based on which the set of servers to be offlined is determined.
We next describe the task definition, graph construction, model
architecture, and the training and deployment details.

3.1 Problem Overview
To address transmission failures in large-scale overlay networks,
we propose a server offlining-based failure handling approach, and
formulate it as a graph-based node-level decision problem. In each
decision round, the system predicts an offlining score for every
edge server with failed streams based on the current state of relay
streams and server-level features. A subset of servers is then se-
lected for offlining, aiming to meet SLO as quickly as possible while
minimizing the number of offline servers and preserving high QoE.

3.2 Graph Construction
To capture the structural correlations between edge servers in relay
streams, we construct a graph 𝐺 = (𝑉 , 𝐸), where each node repre-
sents an edge server and each edge corresponds to a pair of servers
that are connected by relay streams within the current time win-
dow. Specifically, the node set 𝑉 includes all edge servers currently
involved in relay streams. An undirected edge (𝑢, 𝑣) ∈ 𝐸 is added
if there exist relay streams between servers 𝑢 and 𝑣 . The resulting
graph is sparse and reflects the connectivity topology formed by
relay streams in the overlay network at the current time. For each
edge (𝑢, 𝑣) ∈ 𝐸, let 𝑆𝑢𝑣 ≥ 0 denote the number of successful relay
streams and 𝐹𝑢𝑣 ≥ 0 the number of failed relay streams. The overall
success ratio 𝑆 is defined as:

𝑆 =

∑︁
(𝑢,𝑣) ∈𝐸

𝑆𝑢𝑣∑︁
(𝑢,𝑣) ∈𝐸

(𝑆𝑢𝑣 + 𝐹𝑢𝑣)
(1)

Each node 𝑣 ∈ 𝑉 is associated with a sequence of historical
feature vectors {𝑥 (𝑡−𝑇+1)𝑣 , . . . , 𝑥

(𝑡)
𝑣 }, where each vector 𝑥 (𝑡

′)
𝑣 ∈ R5

includes the following key features:
• fail_ratio: the proportion of failed relay streams among all
relay streams associated with the server;

• mean_rtt: the average round-trip time (RTT) across all links
of the server;

45

CNC ’25, December 01–04, 2025, Hong Kong, Hong Kong Xingxing Yang et al.

Server - Region 2

Server - Region 1

Server - Region 3

State Graph

GRU

1-st GNN Layer 2-nd GNN Layer

Sentry

MLP

Temporal Embedding Module

Structural Encoding Module

Decision Scoring Module

Figure 3: Overview of the Sentry model architecture.

• mean_loss: the average packet loss rate across all links of
the server;

• active_user_count: the current number of active users on
the server;

• coverage_impact = 1
𝑁𝑣

: the impact of offlining this server
on regional coverage, where 𝑁𝑣 denotes the total number of
edge servers in the same region.

The feature set captures both the severity of server failures and
the potential cost of offlining, covering key dimensions for offlining
decisions. All features can be collected in real time by existing
systems, ensuring good deployability.

3.3 Model Architecture
To capture temporal dynamics and structural dependencies, we
design a spatiotemporal GNN combining GRU for temporal mod-
eling and GraphSAGE for spatial aggregation, driven by two key
motivations: (1) temporal modeling aims to distinguish persistent
failures from short-term fluctuations, avoiding misjudgments and
unnecessary server offlining caused by transient network anomalies
such as sudden traffic bursts leading to temporary congestion. To
achieve this, a Temporal Embedding module is introduced to model
the state sequence of each server over the past𝑇 time steps, captur-
ing the evolution trend of states and enhancing failure discrimina-
tion robustness; (2) structural awareness helps capture correlated
failures and improve decision quality. In real networks, transmis-
sion failures often affect multiple servers due to shared root causes.
Relying only on local information may mistake such anomalies for
independent issues, leading to excessive offlining. For example, if a
link issue causes high packet loss between servers A and B, offlining
either one may suffice—without structural awareness, both might
be offlined unnecessarily, wasting resources and reducing coverage.
By aggregating neighbor states through a GraphSAGE-based Struc-
tural Encoding module, the model detects structural anomalies and
avoids redundant actions.

As shown in Figure 3, the model consists of three main modules.
First, the Temporal Embedding Module takes as input the state
feature sequence of each node 𝑣 in the state graph 𝐺 over the past
𝑇 time windows:

X𝑣 =

[
x(𝑡−𝑇+1)𝑣 , x(𝑡−𝑇+2)𝑣 , . . . , x(𝑡)𝑣

]
, x(𝑡

′)
𝑣 ∈ R5 .

We employ a single-layer GRU to capture the temporal dynamics
of each node, modeling how its state evolves over time—whether
it is persistently deteriorating, gradually recovering, or merely
undergoing short-term fluctuations. The GRU produces a sequence
of hidden states

H𝑣 = GRU(X𝑣) =
[
h(𝑡−𝑇+1)𝑣 , h(𝑡−𝑇+2)𝑣 , . . . , h(𝑡)𝑣

]
,

and the last hidden state is used as the temporal-aware representa-
tion of node 𝑣 : ztem𝑣 = h(𝑡)𝑣 .

Next, on the state graph 𝐺 , the Structural Encoding Mod-
ule uses each node temporal-aware representation ztem𝑣 as input
and applies two layers of GraphSAGE to perform structure-aware
representation learning. GraphSAGE uses mean aggregation over
neighbors for efficient local modeling in sparse graphs, followed
by ReLU activation to enhance nonlinearity. The update rule at the
𝑙th layer is given by

z(𝑙)𝑣 = 𝜙

(
W(𝑙) ·MEAN

({
z(𝑙−1)𝑣

}
∪
{
z(𝑙−1)𝑢 : 𝑢 ∈ N (𝑣)

}))
,

whereN(𝑣) denotes the set of neighbors of node 𝑣 , 𝜙 (·) is the ReLU
activation function, and W(𝑙) is the learnable weight matrix of the
𝑙th layer. Each node finally obtains a low-dimensional embedding
that fuses both temporal and structural information: zstr𝑣 = z(2)𝑣 .

TheDecision ScoringModule takes the embedding zstr𝑣 of each
node with failed relay streams and computes an offlining score via
a two-layer MLP with ReLU and Sigmoid activations, indicating
the urgency of offlining node 𝑣 :

𝑠𝑣 = 𝜎

(
W2 · 𝜙 (W1 · zstr𝑣 + b1) + b2

)
, 𝑠𝑣 ∈ [0, 1],

where W1,W2 and b1, b2 are learnable parameters, 𝜙 (·) denotes
ReLU, and 𝜎 (·) denotes Sigmoid.

3.4 Training and Deployment
To achieve efficient and deployable offlining decisions, we use of-
fline training with online inference.

3.4.1 Supervision and Labels. We treat offlining as supervised
learning on production failure logs, using state feature sequences
of servers with relay streams as inputs. A server is labeled positive
(label 1) if offlining the server improves QoE under the SLO without
a lower-cost alternative achieving the same; otherwise, it is labeled
negative (label 0). The model is trained with binary cross-entropy
loss to minimize the gap between predicted scores 𝑠𝑣 and labels 𝑦𝑣 .

3.4.2 Deployment and Inference. During deployment, the model is
periodically updated offline. At inference, it takes the recent state
features of each server and the current graph as input, and outputs
an offlining score 𝑠𝑣 ∈ [0, 1] for each server that has failed streams.
Servers are ranked by score in descending order and added one by
one to the offlining set. After each addition, the server is removed
and the stream success rate checked. The process stops when the
SLO is met, and the resulting set forms the offlining plan. The model
includes a GRU layer (hidden dimension 32), two GraphSAGE layers
(hidden dimension 64), and an MLP layer (hidden dimension 32).
The output is a Sigmoid-activated scalar. The model is trained with
Adam optimizer (learning rate 0.001) for 10 epochs. All simulations
use this configuration.

46

Sentry: QoE-Aware Failure Handling in Large-Scale Overlay Networks via Spatiotemporal GNNs CNC ’25, December 01–04, 2025, Hong Kong, Hong Kong

4 Evaluation
We evaluate Sentry through simulations. Section 4.1 details the
setup, and Section 4.2 compares Sentry with baselines.

4.1 Experiment Setup
This section describes the topology, trace generation, baselines, and
evaluation metrics used in our simulations.

4.1.1 Traces. We implemented a Python-based trace generator to
construct a server-level overlay network dataset. The simulated
network includes 10 service regions and 30 edge data centers (2
servers each). Five major regions have 5 data centers each, while
the others have 1. Each region operates as an independent service
domain. In the failure-free scenario, we randomly sample 50% of
all possible server pairs and generate end-to-end relay paths for
each selected pair. The following network quality parameters are
assigned: RTT is uniformly sampled from [1, 200] ms, packet loss
rate from [0, 0.001], and the initial stream success rate is set to
100%. The number of streams between each server pair is uniformly
sampled from the range [0, 10]. To support temporal modeling,
we generate server state features for 3 consecutive observation
windows (each lasting 30 seconds) for every failure scenario. Each
server at each time step is described by a five-dimensional feature
vector: fail_ratio, mean_rtt, mean_loss, active_user_count, and cov-
erage_impact, where active_user_count is uniformly sampled from
[1, 100]. All path quality parameters are re-sampled at each time
step to reflect the dynamic dynamic changes in server state.

We design three typical failure scenarios based on the empirical
relationship between packet loss rate and stream success rate fitted
from production data:

𝑦 =


1 if 0 ≤ 𝑥 ≤ 0.132
−1.06𝑥 + 1.14 if 0.132 < 𝑥 ≤ 0.5
−1.2𝑥 + 1.2 if 0.5 < 𝑥 ≤ 1

(2)

where 𝑦 denotes the success rate and 𝑥 is the loss rate.
We design the following failure scenarios: (1)Mild Path Failure

Scenario: 100 cases with failure ratios randomly selected between
0.1% and 1%. For each case, a corresponding number of edge server
paths are randomly sampled, and their packet loss rates are set
to random values within (0.132, 1]. Half of these cases are used
for training, where beam search [16] generates multiple offlining
solutions meeting the SLO; the one with the lowest failure handling
cost is selected as a weak label. The other half form the test set to
evaluate Sentry and baselines on failure handling success rate and
cost; (2) Moderate Path Failure Scenario: 100 cases with failure
ratios randomly selected between 1% and 10%, with randomly sam-
pled edge server paths assigned packet loss rates in (0.132, 1]. Half
are used as training data, and half as test data; (3) Server-Wide
Path Failure Scenario: 100 cases with failure ratios randomly
selected between 0.1% and 10%. For each case, a corresponding
number of edge servers are randomly sampled, and all their associ-
ated paths have packet loss rates uniformly set to random values
within (0.132, 1]. Half of the cases are used for training, and half
for testing. All failure cases retained in the dataset are designed to
trigger the failure handling logic of the system.

3 3 %

1 0 0 % 1 0 0 %

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Su
cce

ss
Ra

te (
%)

 N e t B o u n c e r
 H e u r i s t i c O f f l i n e
 S e n t r y

Figure 4: Comparison of failure handling success rates.

4.1.2 Baselines. (1) NetBouncer [22] is a failure detection mecha-
nism originally designed for data centers. To adapt it to the overlay
network scenario, the detection rule is modified such that when
an edge server loses all paths with success rate 1, it is considered
faulty and triggers offlining; (2) HeuristicOffline is a heuristic
offlining strategy based on failure rates, where servers are sorted
by fail_ratio from high to low and offlined sequentially until overall
service recovers to meet the SLO.

For failure handling methods based on overlay routing, we at-
tempted to build a full path rerouting mechanism at the server
granularity, i.e., calculating the K-shortest loopless paths between
any two edge servers using Yen’s algorithm [27]. However, this
method has a computational complexity of 𝑂 (𝑛5) for 𝑛 nodes, fail-
ing to meet scalability requirements. Therefore, such methods are
not included in the simulation. We plan to compare Sentry with
overlay routing methods based on datacenter granularity in real
system deployments to quantify performance advantage under fine-
grained scheduling.

4.1.3 Metrics. We classify the evaluation metrics into two cate-
gories: (1) Failure Handling Success Rate, defined as the propor-
tion of cases where the overall relay stream success rate (as defined
in Equation 1) reaches 99.99% after applying a failure handling solu-
tion; and (2) Failure Handling Cost, which includes two compo-
nents—namely, the number of offlined servers, reflecting potential
redundancy in server shutdowns, and the QoE degradation score,
quantifying the user experience impact. For each offlined server 𝑣 ,
the local QoE loss is calculated as: QoE𝑣 = 𝛼 · active_user_count𝑣 +
𝛽 · coverage_impact𝑣, where 𝛼 = 1.0 and 𝛽 = 100 represent the
weights for user count and coverage impact, respectively. The over-
all QoE degradation score is computed by summing the local QoE
losses across all offlined servers:

QoE Degradation Score =
∑︁

𝑣∈offline_set
QoE𝑣 .

4.2 Comparison with Baselines
We systematically compare Sentry with baselines in simulation.
The evaluation metrics include failure handling success rate, the
number of offlined servers, and QoE degradation caused by server
offlining.

First, as shown in Figure 4, Sentry achieves a 100% failure han-
dling success rate across all 150 test cases, demonstrating excel-
lent failure handling capability. In contrast, HeuristicOffline also
achieves a 100% success rate, validating the effectiveness of prior-
itizing high-fail-ratio servers for offlining. However, NetBouncer
achieves only 33.33%, significantly lower than the others, indicating

47

CNC ’25, December 01–04, 2025, Hong Kong, Hong Kong Xingxing Yang et al.

0 . 8 8

1 4 . 2 8 1 4 . 7 5

0
2
4
6
8

1 0
1 2
1 4
1 6

Co
unt

 N e t B o u n c e r
 H e u r i s t i c O f f l i n e
 S e n t r y

(a) Average server offlining
counts per failure case.

N e t B o u n c e r H e u r i s t i c O f f l i n e S e n t r y
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

Qo
E D

egr
ad

ati
on

 Sc
ore

(b) Average QoE loss caused by
server offlining.

Figure 5: Comparison of failure handling costs.

that its datacenter-oriented design does not transfer well to the
overlay network context.

In terms of offlining cost, as shown in Figure 5a, Sentry requires
an average of 14.75 offlined servers, slightly higher than Heuris-
ticOffline (14.28), but the difference is small. This indicates that
Sentry maintains high success rates while avoiding excessive of-
flining. While NetBouncer shows the lowest offlining count (0.88),
this comes at the cost of a significantly lower success rate, making
it impractical for high-availability deployments.

Furthermore, as shown in Figure 5b, Sentry outperforms in QoE
degradation score, with an average of 860.09—significantly lower
than HeuristicOffline (957.88). This demonstrates that Sentry not
only handles failures effectively but also intelligently selects servers
with minimal user impact for offlining, thereby minimizing user
experience degradation. While NetBouncer shows the lowest QoE
degradation (59.89), this comes at the cost of failing to address
failures, rendering the metric less meaningful.

Overall, Sentry achieves a strong balance between failure han-
dling success rate and cost, demonstrating better overall perfor-
mance and deployment potential. Compared to simple heuristics,
Sentry leverages spatiotemporal GNN for smarter decisions; com-
pared to traditional datacenter approaches, Sentry better adapts to
the complexity of large-scale overlay networks.

To further validate Sentry in real-world scenarios, we plan to
deploy and conduct online A/B testing in a large-scale overlay net-
work operated by a leading global transmission service provider.
The target network spans over 200 countries and territories, en-
compassing hundreds of edge data centers and tens of thousands of
servers. The experiment will compare failure handling performance
with and without Sentry, and against datacenter-level overlay rout-
ing methods, to assess the advantages of Sentry.

5 Discussion
Sentry complements, not replaces, existing failure handling mech-
anisms, but deployment still faces challenges. First, the update
frequency must be carefully balanced to avoid system instability
or missing critical changes [10]. Second, in real-world scenarios,
failure data is scarce and user feedback is often delayed, which can
negatively impact model quality. As future work, we will explore
the integration of weak-label learning [28] and lightweight online
fine-tuning [3], guided by online feedback.

Furthermore, after Sentry offlines abnormal servers, a large num-
ber of users need to reconnect. Without proper control, this may
lead to traffic concentration and new failures. To address this, the

system incorporates both user connection rate control and load-
aware edge server mechanisms. The former staggers server removal
to mitigate the herd effect [26], while the latter dynamically esti-
mates regional capacity based on reported resource usage to prevent
overload. Although this strategy is generally stable, its reliance on
limited observations and empirical thresholds can lead to local im-
balances in the presence of traffic surges or complex cross-region
scheduling. Existing methods [6, 15] also struggle to handle such
scenarios effectively. We plan to use machine learning to improve
load prediction and scheduling.

6 Conclusion
We present Sentry, a spatiotemporal graph neural network-based
failure handling approach designed to enhance transmission quality
in large-scale overlay networks. Bymodeling relay streams between
edge servers as a state graph, Sentry combines temporal modeling
and spatial aggregation to accurately predict anomalous servers
and make offlining decisions. This leads to significantly improved
network availability and reduced failure handling cost. Experimen-
tal results demonstrate that Sentry outperforms existing methods
across various failure scenarios, exhibiting strong robustness and
generalization capabilities.

Acknowledgments
This work was supported in part by the National Key Research and
Development Program of China under Grant 2024YFB2906705.

References
[1] 2022. Agora’s Software Defined Real-TimeNetwork™Delivers Real-Time Internet

Advantages Over Content Delivery Network. https://hello.agora.io/rs/096-LBH-
766/images/Agora_WP_SD-RTN-Delivers-RealTime-Internet-Advantages.pdf.

[2] 2025. AWS Global Accelerator. https://aws.amazon.com/global-accelerator
(accessed July 2025).

[3] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo
Caccia, Min Lin, and Lucas Page-Caccia. 2019. Online continual learning with
maximal interfered retrieval. Advances in neural information processing systems
32 (2019). https://dl.acm.org/doi/abs/10.5555/3454287.3455350

[4] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. 2001.
Resilient overlay networks. In Proceedings of the eighteenth ACM symposium on
Operating systems principles. 131–145. doi:10.1145/502034.502048

[5] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stewart, Jitendra Padhye,
Ratul Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. 2018.
Odin:{Microsoft’s} scalable {Fault-Tolerant}{CDN} measurement system. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI
18). 501–517. https://dl.acm.org/doi/10.5555/3307441.3307484

[6] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. 2015. End-user mapping:
Next generation request routing for content delivery. ACM SIGCOMM Computer
Communication Review 45, 4 (2015), 167–181. doi:10.1145/2829988.2787500

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014). doi:10.48550/arXiv.1412.3555

[8] Jason Clements, Teodros Gessesse, Darshan Sedani, and Jerry Klein. 2016. Live
video broadcasting mobile application for social sharing. US Patent App.
14/821,519.

[9] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. 2011. Understanding the impact of video quality on
user engagement. ACM SIGCOMM computer communication review 41, 4 (2011),
362–373. doi:10.1145/2043164.2018478

[10] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1–37. doi:10.1145/2523813

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017). https://dl.acm.org/doi/10.5555/3294771.3294869

[12] Rupa Krishnan, Harsha V Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. 2009. Moving beyond end-to-end
path information to optimize CDN performance. In Proceedings of the 9th ACM

48

https://hello.agora.io/rs/096-LBH-766/images/Agora_WP_SD-RTN-Delivers-RealTime-Internet-Advantages.pdf
https://hello.agora.io/rs/096-LBH-766/images/Agora_WP_SD-RTN-Delivers-RealTime-Internet-Advantages.pdf
https://aws.amazon.com/global-accelerator
https://dl.acm.org/doi/abs/10.5555/3454287.3455350
https://doi.org/10.1145/502034.502048
https://dl.acm.org/doi/10.5555/3307441.3307484
https://doi.org/10.1145/2829988.2787500
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1145/2043164.2018478
https://doi.org/10.1145/2523813
https://dl.acm.org/doi/10.5555/3294771.3294869

Sentry: QoE-Aware Failure Handling in Large-Scale Overlay Networks via Spatiotemporal GNNs CNC ’25, December 01–04, 2025, Hong Kong, Hong Kong

SIGCOMM conference on Internet measurement. 190–201. doi:10.1145/1644893.16
44917

[13] Geng Li, Shuihai Hu, and Kun Tan. 2024. Panorama: Optimizing Internet-scale
{Users’} Routes from End to End. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24). 935–949. https://dl.acm.org/doi/10.5555/3691992.3692049

[14] Bill Marczak and John Scott-Railton. 2020. Move Fast and Roll Your Own Crypto:
A Quick Look at the Confidentiality of Zoom Meetings. https://citizenlab.ca/20
20/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-
of-zoom-meetings/

[15] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai network:
a platform for high-performance internet applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2–19. doi:10.1145/1842733.1842736

[16] Peng Si Ow and Thomas E Morton. 1988. Filtered beam search in scheduling.
The International Journal Of Production Research 26, 1 (1988), 35–62. doi:10.1080/
00207548808947840

[17] Jon Postel. 1981. Internet Control Message Protocol. RFC 792. https://tools.ietf
.org/html/rfc792

[18] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren. 2017. Passive
realtime datacenter fault detection and localization. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). 595–612. https:
//dl.acm.org/doi/10.5555/3154630.3154679

[19] Ramesh K Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and Manish Jain.
2014. Overlay networks: An akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services (2014), 305–328. doi:10.1002/9781118909690.ch16

[20] Ivan Slivar, Mirko Suznjevic, and Lea Skorin-Kapov. 2018. Game categorization
for deriving QoE-driven video encoding configuration strategies for cloud gaming.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 14, 3s (2018), 1–24. doi:10.1145/3132041

[21] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H
Katz. 2004. OverQoS: An Overlay Based Architecture for Enhancing Internet
QoS.. In NSDI, Vol. 4. 71–84. https://dl.acm.org/doi/10.5555/1251175.1251181

[22] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. {NetBouncer}: Active device and link

failure localization in data center networks. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 599–614. https:
//dl.acm.org/doi/10.5555/3323234.3323283

[23] Shengwen Tian, Jianxin Liao, Tonghong Li, JingyuWang, and Guanghai Cui. 2017.
Resilient routing overlay network construction with super-relay nodes. KSII
Transactions on Internet and Information Systems (TIIS) 11, 4 (2017), 1911–1930.
doi:10.3837/tiis.2017.04.005

[24] Van Tong, Sami Souihi, Hai Anh Tran, and Abdelhamid Mellouk. 2021. Machine
learning based root cause analysis for SDN network. In 2021 IEEE Global Com-
munications Conference (GLOBECOM). IEEE, 1–6. doi:10.1109/GLOBECOM46510.
2021.9685185

[25] Hui Yang, Xudong Zhao, Qiuyan Yao, Ao Yu, Jie Zhang, and Yuefeng Ji. 2020.
Accurate fault location using deep neural evolution network in cloud data center
interconnection. IEEE Transactions on Cloud Computing 10, 2 (2020), 1402–1412.
doi:10.1109/TCC.2020.2974466

[26] Haijun Yang, Qinghua Zheng, Minqiang Li, and Yuzhong Sun. 2015. How to avoid
herd behavior: A stochastic multi-choice scheduling algorithm and parameters
analysis in grid scheduling. International Journal of Information Technology &
Decision Making 14, 02 (2015), 287–315. doi:10.1142/S0219622014500734

[27] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management
Science 17, 11 (1971), 712–716. doi:10.1287/mnsc.17.11.712

[28] Zhi-Hua Zhou. 2018. A brief introduction to weakly supervised learning. National
science review 5, 1 (2018), 44–53. doi:10.1093/nsr/nwx106

[29] Yaping Zhu, Benjamin Helsley, Jennifer Rexford, Aspi Siganporia, and Sridhar
Srinivasan. 2012. LatLong: Diagnosing wide-area latency changes for CDNs. IEEE
Transactions on Network and Service Management 9, 3 (2012), 333–345. doi:10.110
9/TNSM.2012.070412.110180

[30] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level
telemetry in large datacenter networks. In Proceedings of the 2015 ACMConference
on Special Interest Group on Data Communication. 479–491. doi:10.1145/2829988.
2787483

49

https://doi.org/10.1145/1644893.1644917
https://doi.org/10.1145/1644893.1644917
https://dl.acm.org/doi/10.5555/3691992.3692049
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://doi.org/10.1145/1842733.1842736
https://doi.org/10.1080/00207548808947840
https://doi.org/10.1080/00207548808947840
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://dl.acm.org/doi/10.5555/3154630.3154679
https://dl.acm.org/doi/10.5555/3154630.3154679
https://doi.org/10.1002/9781118909690.ch16
https://doi.org/10.1145/3132041
https://dl.acm.org/doi/10.5555/1251175.1251181
https://dl.acm.org/doi/10.5555/3323234.3323283
https://dl.acm.org/doi/10.5555/3323234.3323283
https://doi.org/10.3837/tiis.2017.04.005
https://doi.org/10.1109/GLOBECOM46510.2021.9685185
https://doi.org/10.1109/GLOBECOM46510.2021.9685185
https://doi.org/10.1109/TCC.2020.2974466
https://doi.org/10.1142/S0219622014500734
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1093/nsr/nwx106
https://doi.org/10.1109/TNSM.2012.070412.110180
https://doi.org/10.1109/TNSM.2012.070412.110180
https://doi.org/10.1145/2829988.2787483
https://doi.org/10.1145/2829988.2787483

	Abstract
	1 Introduction
	2 Background
	2.1 Types of Transmission Failures
	2.2 Limitations of Existing Solutions

	3 Method Design
	3.1 Problem Overview
	3.2 Graph Construction
	3.3 Model Architecture
	3.4 Training and Deployment

	4 Evaluation
	4.1 Experiment Setup
	4.2 Comparison with Baselines

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

